72 research outputs found

    Development and evaluation of a real-time one step Reverse-Transcriptase PCR for quantitation of Chandipura Virus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chandipura virus (CHPV), a member of family <it>Rhabdoviridae </it>was attributed to an explosive outbreak of acute encephalitis in children in Andhra Pradesh, India in 2003 and a small outbreak among tribal children from Gujarat, Western India in 2004. The case-fatality rate ranged from 55–75%. Considering the rapid progression of the disease and high mortality, a highly sensitive method for quantifying CHPV RNA by real-time one step reverse transcriptase PCR (real-time one step RT-PCR) using TaqMan technology was developed for rapid diagnosis.</p> <p>Methods</p> <p>Primers and probe for P gene were designed and used to standardize real-time one step RT-PCR assay for CHPV RNA quantitation. Standard RNA was prepared by PCR amplification, TA cloning and run off transcription. The optimized real-time one step RT-PCR assay was compared with the diagnostic nested RT-PCR and different virus isolation systems [<it>in vivo </it>(mice) <it>in ovo </it>(eggs), <it>in vitro </it>(Vero E6, PS, RD and Sand fly cell line)] for the detection of CHPV. Sensitivity and specificity of real-time one step RT-PCR assay was evaluated with diagnostic nested RT-PCR, which is considered as a gold standard.</p> <p>Results</p> <p>Real-time one step RT-PCR was optimized using <it>in vitro </it>transcribed (IVT) RNA. Standard curve showed linear relationship for wide range of 10<sup>2</sup>-10<sup>10 </sup>(r<sup>2 </sup>= 0.99) with maximum Coefficient of variation (CV = 5.91%) for IVT RNA. The newly developed real-time RT-PCR was at par with nested RT-PCR in sensitivity and superior to cell lines and other living systems (embryonated eggs and infant mice) used for the isolation of the virus. Detection limit of real-time one step RT-PCR and nested RT-PCR was found to be 1.2 × 10<sup>0 </sup>PFU/ml. RD cells, sand fly cells, infant mice, and embryonated eggs showed almost equal sensitivity (1.2 × 10<sup>2 </sup>PFU/ml). Vero and PS cell-lines (1.2 × 10<sup>3 </sup>PFU/ml) were least sensitive to CHPV infection. Specificity of the assay was found to be 100% when RNA from other viruses or healthy individual was used.</p> <p>Conclusion</p> <p>On account of the high sensitivity, reproducibility and specificity, the assay can be used for the rapid detection and quantitation of CHPV RNA from clinical samples during epidemics and from endemic areas. The assay may also find application in screening of antiviral compounds, understanding of pathogenesis as well as evaluation of vaccine.</p

    Improving statistical inference on pathogen densities estimated by quantitative molecular methods: malaria gametocytaemia as a case study

    Get PDF
    BACKGROUND: Quantitative molecular methods (QMMs) such as quantitative real-time polymerase chain reaction (q-PCR), reverse-transcriptase PCR (qRT-PCR) and quantitative nucleic acid sequence-based amplification (QT-NASBA) are increasingly used to estimate pathogen density in a variety of clinical and epidemiological contexts. These methods are often classified as semi-quantitative, yet estimates of reliability or sensitivity are seldom reported. Here, a statistical framework is developed for assessing the reliability (uncertainty) of pathogen densities estimated using QMMs and the associated diagnostic sensitivity. The method is illustrated with quantification of Plasmodium falciparum gametocytaemia by QT-NASBA. RESULTS: The reliability of pathogen (e.g. gametocyte) densities, and the accompanying diagnostic sensitivity, estimated by two contrasting statistical calibration techniques, are compared; a traditional method and a mixed model Bayesian approach. The latter accounts for statistical dependence of QMM assays run under identical laboratory protocols and permits structural modelling of experimental measurements, allowing precision to vary with pathogen density. Traditional calibration cannot account for inter-assay variability arising from imperfect QMMs and generates estimates of pathogen density that have poor reliability, are variable among assays and inaccurately reflect diagnostic sensitivity. The Bayesian mixed model approach assimilates information from replica QMM assays, improving reliability and inter-assay homogeneity, providing an accurate appraisal of quantitative and diagnostic performance. CONCLUSIONS: Bayesian mixed model statistical calibration supersedes traditional techniques in the context of QMM-derived estimates of pathogen density, offering the potential to improve substantially the depth and quality of clinical and epidemiological inference for a wide variety of pathogens

    Counting Mycobacteria in Infected Human Cells and Mouse Tissue: A Comparison between qPCR and CFU

    Get PDF
    Due to the slow growth rate and pathogenicity of mycobacteria, enumeration by traditional reference methods like colony counting is notoriously time-consuming, inconvenient and biohazardous. Thus, novel methods that rapidly and reliably quantify mycobacteria are warranted in experimental models to facilitate basic research, development of vaccines and anti-mycobacterial drugs. In this study we have developed quantitative polymerase chain reaction (qPCR) assays for simultaneous quantification of mycobacterial and host DNA in infected human macrophage cultures and in mouse tissues. The qPCR method cannot discriminate live from dead bacteria and found a 10- to 100-fold excess of mycobacterial genomes, relative to colony formation. However, good linear correlations were observed between viable colony counts and qPCR results from infected macrophage cultures (Pearson correlation coefficient [r] for M. tuberculosis = 0.82; M. a. avium = 0.95; M. a. paratuberculosis = 0.91). Regression models that predict colony counts from qPCR data in infected macrophages were validated empirically and showed a high degree of agreement with observed counts. Similar correlation results were also obtained in liver and spleen homogenates of M. a. avium infected mice, although the correlations were distinct for the early phase (<day 9 post-infection) and later phase (≥day 20 post-infection) liver r = 0.94 and r = 0.91; spleen r = 0.91 and r = 0.87, respectively. Interestingly, in the mouse model the number of live bacteria as determined by colony counts constituted a much higher proportion of the total genomic qPCR count in the early phase (geometric mean ratio of 0.37 and 0.34 in spleen and liver, respectively), as compared to later phase of infection (geometric mean ratio of 0.01 in both spleen and liver). Overall, qPCR methods offer advantages in biosafety, time-saving, assay range and reproducibility compared to colony counting. Additionally, the duplex format allows enumeration of bacteria per host cell, an advantage in experiments where variable cell death can give misleading colony counts

    Molecular diagnostics of intestinal parasites in returning travellers

    Get PDF
    A new diagnostic strategy was assessed for the routine diagnosis of intestinal parasites in returning travellers and immigrants. Over a period of 13 months, unpreserved stool samples, patient characteristics and clinical data were collected from those attending a travel clinic. Stool samples were analysed on a daily basis by microscopic examination and antigen detection (i.e. care as usual), and compared with a weekly performed multiplex real-time polymerase chain reaction (PCR) analysis on Entamoeba histolytica, Giardia lamblia, Cryptosporidium and Strongyloides stercoralis. Microscopy and antigen assays of 2,591 stool samples showed E. histolytica, G. lamblia, Cryptosporidium and S. stercoralis in 0.3, 4.7, 0.5 and 0.1% of the cases, respectively. These detection rates were increased using real-time PCR to 0.5, 6.0, 1.3 and 0.8%, respectively. The prevalence of ten additional pathogenic parasite species identified with microscopy was, at most, 0.5%. A pre-selective decision tree based on travel history or gastro-intestinal complaints could not be made. With increased detection rates at a lower workload and the potential to extend with additional parasite targets combined with fully automated DNA isolation, molecular high-throughput screening could eventually replace microscopy to a large extent

    Autophagy and ATP-induced anti-apoptosis in antigen presenting cells (APC) follows the cytokine storm in patients after major trauma

    Get PDF
    Severe trauma and the systemic inflammatory response syndrome (SIRS) occur as a result of a cytokine storm which is in part due to ATP released from damaged tissue. This pathology also leads to increased numbers of immature antigen presenting cells (APC) sharing properties of dendritic cells (DC) or macrophages (MΦ). The occurrence of immature APC appears to coincide with the reactivation of herpes virus infections such as Epstein Barr virus (EBV). The aim of this study was the comparative analysis of the ultrastructural and functional characteristics of such immature APC. In addition, we investigated EBV infection/ reactivation and whether immature APC might be targets for natural killers (NK). Significant macroautophagy, mitochondrial degradation and multivesicular body formation together with the identification of herpes virus particles were morphological findings associated with immature APC. Exogenous stressors such as ATP further increased morphological signs of autophagy, including LC3 expression. Functional tests using fluorescent bacteria proved impaired phagolysosome fusion. However, immature APC were susceptible to NK-92-mediated cytolysis. We found evidence for EBV latency state II infection by detecting EBV-specific LMP1 and EBNA2 in immature APC and in whole blood of these patients. In summary, trauma-induced cytokine storms may induce maturation arrest of APC, promote ATP-induced autophagy, support EBV persistence and impair the degradation of phagocytozed bacteria through inefficient phagolysosome fusion. The susceptibility to NK-mediated cytolysis supports the hypothesis that NK function is likely to contribute to immune reconstitution after major trauma by regulating immature APC, and ATP-induced autophagy and survival

    Real-time PCR Demonstrates Ancylostoma duodenale Is a Key Factor in the Etiology of Severe Anemia and Iron Deficiency in Malawian Pre-school Children

    Get PDF
    Hookworm infections are a major cause of childhood anemia and iron deficiency. Two hookworm species exist of which Ancylostoma duodenale is the less common, yet causing more blood loss than Necator americanus. Although species differentiation and quantification are both of clinical importance, these are often not performed as the technique is complex and laborious using microscopy. Multiplex real-time PCR is a novel diagnostic tool which allows hookworm species differentiation and infection quantification. We applied this test in 830 stool samples of Malawian children with and without severe anemia. The prevalence of hookworm infections was high. A. duodenale was unexpectedly more prevalent than N. americanus. A. duodenale infections were associated with increased risk for severe anemia and iron deficiency, both of which increased with infection load. The study identifies a need for the quantitative screening of species-specific hookworm infections, which readily can be achieved by real-time-PCR. A. duodenale was independently associated with severe anemia and iron deficiency in our study population

    Development of a Real-Time PCR for Identification of Brachyspira Species in Human Colonic Biopsies

    Get PDF
    Background: Brachyspira species are fastidious anaerobic microorganisms, that infect the colon of various animals. The genus contains both important pathogens of livestock as well as commensals. Two species are known to infect humans: B. aalborgi and B. pilosicoli. There is some evidence suggesting that the veterinary pathogenic B. pilosicoli is a potential zoonotic agent, however, since diagnosis in humans is based on histopathology of colon biopsies, species identification is not routinely performed in human materials. Methods: The study population comprised 57 patients with microscopic evidence of Brachyspira infection and 26 patients with no histopathological evidence of Brachyspira infection. Concomitant faecal samples were available from three infected patients. Based on publically available 16S rDNA gene sequences of all Brachyspira species, species-specific primer sets were designed. DNA was extracted and tested by real-time PCR and 16S rDNA was sequenced. Results: Sensitivity and specificity for identification of Brachyspira species in colon biopsies was 100% and 87.7% respectively. Sequencing revealed B. pilosicoli in 15.4% of patients, B. aalborgi in 76.9% and a third species, tentatively named ‘‘Brachyspira hominis’’, in 26.2%. Ten patients (12.3%) had a double and two (3.1%) a triple infection. The presence of Brachyspira pilosicoli was significantly associated with inflammatory changes in the colon-biopsy (p = 0.028). Conclusions: This newly designed PCR allows for sub-differentiation of Brachyspira species in patient material and thus allows large-scaled surveillance studies to elucidate the pathogenicity of human Brachyspira infections. One-third of affected patients appeared to be infected with a novel species
    corecore